
Abstract. Coupled advances in empirical force ®elds
and classical molecular dynamics simulation methodol-
ogies, combined with the availability of faster comput-
ers, has lead to signi®cant progress towards accurately
representing the structure and dynamics of biomolecular
systems, such as proteins, nucleic acids, and lipids in
their native environments. Thanks to these advances,
simulation results are moving beyond merely evaluating
force ®elds, displaying expected structural ¯uctuations,
or demonstrating low root-mean-squared deviations
from experimental structures and now provide believ-
able structural insight into a variety of processes such as
the stabilization of A-DNA in mixed water and ethanol
solution or reversible b-peptide folding in methanol. The
purpose of this overview is to take stock of these recent
advances in biomolecular simulation and point out some
common de®ciencies exposed in longer simulations. The
most signi®cant methodological advances relate to the
development of fast methods to properly treat long-
range electrostatic interactions, and in this regard the
fast Ewald methods are becoming the de facto standard.
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1 Introduction

Classical molecular dynamics (MD) simulation of bio-
molecules, such as proteins, nucleic acids, and lipids in
their native environments, have seen signi®cant advance
due to the availability of reliable molecular mechanical
(MM) force ®elds, development of better simulation
methodologies and most notably reasonable treatment
of the long-range electrostatic forces and faster comput-
ers. With these methods, the results move beyond simply
testing force ®elds or displaying low root-mean-squared

deviations (RMSd) from experimental structures to give
believable structural and phenomenological insight into
a variety of processes. Recent simulations suggest the
methods are capable of representing subtle environmen-
tally dependent conformational equilibria in DNA
duplexes [1±4] and also provide an understanding of
lipid structure at the atomic level which generalizes the
results of experiments [5±8]. Moreover, these simulations
aid in the prediction of peptide and protein-loop
conformation and help interpret protein-folding mech-
anisms [9±14]. By moving beyond simply evaluating
methods, the reasonable and reliable simulation of
biomolecular systems gives a detailed picture of their
structure, energetics, and dynamics which can ultimately
provide insight into biological function. In addition to
the routine use of restrained MD simulations as an aid in
structural re®nement of crystal or NMR structures, the
dynamics can also reliably estimate anisotropic rota-
tional di�usion tensors [15] and help in the interpretat-
ion of N-H order parameters [16], consistent with NMR
data. Additionally these methods can give atomic-level
insight into the short-time scale (ps-ls) dynamics
typically masked by averaging in X-ray crystallographic
or NMR spectroscopic experiments. Beyond directly
complementing experiments, if the methods are proven
to be reliable they can be applied in cases where
experimentation is currently limited or di�cult. Exam-
ples include the study of highly ¯exible systems such as
membranes, or the investigation of ``prototype'' mole-
cules not yet synthesized or characterized structurally
(such as various backbone modi®cations to DNA that
may be potentially useful as antisense therapeutics).

For the purposes of this overview, ``biomolecular
simulation'' refers to investigation of the structure and
dynamics of proteins, nucleic acids, lipids, or other bi-
ological molecules at an atomic level using theoretical
techniques, such as MD or Monte Carlo methods [17±
20], and presenting the most realistic representation of
the environment as possible. The last point deserves
elaboration. Since these molecules are typically large,
and since accurate investigation further requires a de-
tailed representation of the integral solvent and ionic
environment, detailed treatments require a minimalCorrespondence to: T.E. Cheatham III
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representation of the system and use of fairly simple
empirical potential functions to keep the simulations
tractable. The number of atoms in a standard simulation
of a biomolecule (with explicit representation of the
solvent) generally involves 1000 or more atoms (typically
in the range of 10,000 to 50,000 atoms). This represents a
moderate sized protein, small nucleic acid structure
(<100 base pairs) or minimal lipid bilayer (<100 lipids)
surrounded by �5±15 AÊ of solvent. It should be re-
membered that this is e�ectively a minimal system and as
such may have solvent properties that di�er considerably
from bulk, e�ective concentrations that are rather high
(in periodic boundary simulations) and may contain an
insu�cient number of molecules to represent certain
large-scale phenomena, such as lipid-bilayer undulations
[21]. Moreover, given that the typical representation
includes only a single biomolecule, certain processes
such as aggregation of DNA at high ethanol concen-
trations cannot easily be studied. For systems of this
size, MD simulations in the 1±50 nanosecond range
(using reliable and accurate methods) currently represent
the state-of-the-art. This time range is reasonable for
equilibration of the initial solute and solvent structure
(which normally occurs in the 50 ps to multi-nanosecond
range) and limited sampling of thermally accessible
conformations. Empirical (pairwise) MM potential
functions are necessary due to the large number of en-
ergy and force evaluations required since small integra-
tion time steps are typically applied to properly represent
the high-frequency motions and allow stable integration
(for a good review, see Schlick et al. [22]). Integration
steps in the 1±2 fs range are routine, although more re-
cently various groups are starting to apply slightly
longer time steps (in the 2±6 fs range) through the ap-
plication of multiple time-step methods [23] such as
RESPA [24], Langevin-Newton, Implicit-Euler [22], or
split integration symplectic methods [25]. Due to their
stability, reversibility, and reasonable representation of
the Hamiltonian, RESPA methods are the most prom-
ising to increase the speed of these calculations. How-
ever, without arti®cially increasing the masses to limit
the high-frequency motions, time steps longer than �5 fs
may be unfeasible when explicit water is included in the
calculation because of the anharmonicity of the di�usive
modes, sti� interactions of the van der Waals potential,
water libration motion at �750 cm)1, and integration
resonance phenomena. This 5 fs time step limitation
manifests itself as a lack of reasonable energy conser-
vation and typically represents half the value of the
Verlet integration catastrophe time step (or the period of
the highest frequency motion divided by p) [22, 26].

The size of the systems investigated, inclusion of ex-
plicit solvent (necessary on some level due to its struc-
tural role), and the large number of energy and force
evaluations required place the demands of these simu-
lations well beyond the capabilities of ab initio methods
at present. And even with the emerging fast parallelized
semi-empirical methods [27, 28] nanosecond-length MD
will not be possible in the near future. However, despite
the simpli®ed nature of the empirical pairwise potentials,
force ®elds are actually quite su�cient for reasonable
representation of the structure and dynamics. Although

the use of an empirical potential precludes the use of
these methods to investigate chemical processes, such as
enzyme mechanism, in these cases it is possible to use
hybrid quantum mechanical (QM) and MM treatments
(QM/MM) where only a limited core part of the system
is treated quantum mechanically [29±31]. However, the
extreme computational demands of these calculations
has limited extensive study and there are still a number
of open issues in QM/MM treatments as how best to
merge the QM and MM regions, what parameters to use
for the empirical potential, and what level of treatment
to use in the QM region (such as specially parameterized
semi-empirical treatments, ab initio, etc.).

2 Strict energy conservation, stable integrators
and modern pressure treatments

The few detailed QM/MM investigations have empha-
sized issues important to any MD treatment, speci®cally
the need for strict energy conservation, stable, reversible,
and ideally symplectic integrators, and reasonable
treatments of pressure and temperature. The various
forms of the Verlet algorithm, such as the leap-frog,
have all these properties and are the most commonly
employed integrators. Despite having these properties,
minor changes to the precise details of the integration
scheme can have a profound e�ect on the derived
properties. For example, with the Verlet algorithms, the
computation of the temperature can be performed with
either the on-step or half-step velocities. Whereas the
temperature calculated with the on-step velocities is
independent of the vibrational frequencies, the com-
monly used half-step velocities can signi®cantly overes-
timate the temperature leading to reduced ``real''
temperatures in the simulation when temperature
coupling is used. Similarly with pressure, it is important
to use the half-step velocities when calculating the viral
in order to maximize the cancellation of errors [32]. To
better maintain the temperature and pressure, the
simulation community has begun to move away from
the ``standard'' weak-coupling method [33] for temper-
ature and pressure coupling to more advanced treat-
ments, such as NoseÂ -Hoover thermostated chains [10,
24] or Langevin piston methods [34]. These methods not
only allow for better temperature and pressure coupling
in the correct ensemble [35], but also allow for new
ensembles which may be more appropriate for the
atomic systems under study, such as constant surface
tension or surface area ensembles appropriate for the
simulation of lipid bilayers [36].

Stability is important in longer simulations otherwise
the gradual accumulation of errors from minor de®-
ciencies in the methods can lead to artifactual behavior.
An example of this relates to the use of methods which
uniformly scale the velocities to maintain temperature
coupled with incomplete energy conservation when the
center of mass motion is not removed during the dy-
namics. If potential energy is lost, the coupling to the
temperature bath will slowly scale the velocities up to
maintain the desired temperature. This scales up the
center of mass motion. In the case of a periodic system,
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the center of mass translational energy cannot couple
back into the system. This not only leads to a violation
of equipartition, but the center of mass translation will
continue to grow until essentially all of the molecular
motion is within this degree of freedom or any low-fre-
quency mode that does not couple well (such as methyl
group rotation) [37]; with a very small energy drain, the
system (be it a periodic box of water or more compli-
cated system involving a solvated biomolecule) resem-
bles a ``¯ying block of ice'' by �500±1000 ps. In general,
if a method is employed that results in an energy drain
that is spatially located (i.e., group-based and the phe-
nomena of truncation with water crossing back and
forth across the cuto� which leads to the ``hot water/
cold protein'' problem) or related to a speci®c vibra-
tional frequency (i.e., the weak-coupling constant pres-
sure algorithm which results in an energy drain from the
highest frequency motion), and uniform scaling is em-
ployed to restore lost energy, then poorly coupled low-
frequency modes can acquire a signi®cant amount of
excess energy which can drastically alter observables. A
useful technique to identify these problems is to calculate
atomic temperature and ¯uctuations (which requires
memory but little extra computation) with some post-
simulation analysis. It was not until longer simulations
(nanosecond length) were routine and methods to ac-
curately treat the long-range electrostatics were routinely
applied (which eliminated the more serious cuto� in-
duced heating) that these e�ects were noticed in periodic
boundary simulations. With commonly applied meth-
ods, small energy drains are routinely possible:

1 If bu�ered pairlists and conservative or heuristic
updates are not applied to prevent the omission of
atoms entering or leaving the cuto� sphere.

2 SHAKE tolerances are not stringent enough.
3 The weak-coupling method is used for pressure

control.
4 Time steps are too large.
5 Approximations are used to represent the long-

ranged electrostatic interactions.

In the latter case, it is important not only to conserve
energy but conserve forces and to this end it may be
more appropriate to apply fast Ewald methods which
interpolate the electrostatic forces rather than the energy
[38]. Therefore, care should also be taken when applying
any of the new fast methods to represent long-range
electrostatic interactions (which are discussed brie¯y in a
later section). For example, accuracy may be lost if low-
order multipole expansions are applied with fast multi-
pole methods (FMM) [39] or if the direct and reciprocal
interactions are unbalanced in Ewald simulations or
inaccurate charge grids applied with the fast Ewald
methods. A simple means to eliminate the problem
related to transfer of energy to center of mass motion
(rotation or translation) or low-frequency modes is to
remove or repartition this excess energy. While this is
straightforward for center of mass degrees of freedom
(which should only be removed as appropriate for the
system under consideration, such as only removing
center of mass translation in periodic systems), it is not
straightforward for low-frequency modes. Although

removal of the center of mass motion in periodic systems
seems to eliminate the major artifactual behavior, drains
of energy from selected modes, coupled with uniform
energy scaling to pump energy back into the system,
leads to inhomogeneity and could lead to artifacts in
longer simulations. Therefore, care should be taken to
conserve energy. Even with conservation of energy
however, uniform temperature scaling to maintain
temperature can lead to a frequency dependence on
temperature scaling [37] with the weak-coupling ap-
proach. One approach to avoid this problem is to alter
the usual calculation of the scaling factor (within a
Verlet leap-frog integration scheme), k, as follows:
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where Tref is the reference temperature, vn is the on-step
velocity and mnÿ1=2, mn�1=2 are the previous and current
half-step velocities, m represents the masses in a sum
over all atoms, Dt the time step, s the coupling time, Cm
the heat capacity and kB is the Boltzmann constant. Use
of this scaling avoids the frequency dependence and can
be used for any size system (including a harmonic
oscillator) in contrast to the standard method which
does not couple properly for small system sizes.

Accurately calculating pressure is also extremely im-
portant since small errors can also accumulate. Unfor-
tunately, this is not straightforward since the methods
used to calculate the pressure, typically based on the
internal virial and calculated as the dot product of the
coordinates with the internal forces [17, 20], are fraught
with pitfalls. With this in mind, the pressure calculated
is best tested on systems with known answers, such as a
small system in a large box (which should have zero
pressure). Care also should be taken to be compatible
with the integrator, such as using half-step velocities in a
Verlet scheme, and it should be noted that any addition
of forces to the system, such as random and frictional
forces of Langevin dynamics, can have a profound e�ect
on the virial. Another example where di�culties arise
is when restraints or constraints are applied to ®x part
of the system. When applying harmonic positional re-
straints or ®xing particular coordinates, the calculated
force does not represent an internal force and therefore
is not included in the calculated (internal) pressure.
Typically this leads to an overestimation of pressure end
can lead to serious artifacts upon change in the box size
(due to pressure coupling). In longer runs with part of
the system ®xed or restrained to initial coordinates
(generally performed for the purposes of equilibrating
the system), the overestimation of pressure can lead to
arti®cial expansion of the periodic box leading to the
appearance of vacuum ``bubbles''. The solution is not to
use these types of restraints/constraints in constant
pressure calculations or to convert these into internal
forces. The latter can be accomplished by applying rel-
ative harmonic positional restraints (i.e., the reference
coordinates are best ®t to the current coordinates at each
time step and the energy and now internal forces to these
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relative coordinates calculated, including the force from
the RMS ®tting which can be derived from the law of
cosines applied in 3N dimensions). Another issue with
constant pressure calculations is how to estimate prop-
erties such as di�usion which will be in¯uenced by the
coordinate scaling during pressure coupling. A simple
means to eliminate this non-physical motion is to post-
process the trajectory to scale the individual coordinate
frames back to the average box size; thus removing the
e�ect of box-size ¯uctuations. Failure to do this results
in an overestimation of the motion of particles near the
edge of the periodic box.

Of course instability and inaccuracy are only a major
issue if the errors are systematic, as in the above exam-
ples. Random force errors, such as those resulting from
the slow accumulation of errors due to limited numerical
precision of the computer, do not seem to lead to arti-
facts since these errors are equally likely to add as sub-
tract from the total energy. To this end, di�erences
obtained between parallel and sequential MD runs re-
sulting from di�erences in the order of operations do not
lead to signi®cant errors and simply manifest the in-
herently chaotic nature of the integration as is discussed
in detail by Braxenthaler et al. [40].

3 The need for proper representation of the environment

Ideally, one would like to use the best possible repre-
sentation in the simulation and this represents a trade-
o� in computational cost and accuracy. Since water is an
integral part of the structure of biological macromole-
cules, some representation is clearly necessary. Without
any representation of the solvent, or even with simple
distance-dependent dielectric treatments which attempt
to mimic solvent screening, DNA structure tends to
distort [41] and proteins compact [42]. Less expensive
than explicitly including solvent, implicit water models
can give reasonable energetic insight, such as the
estimation of the pKa of titratable groups, solvation
and binding free energies, and salt e�ects on nucleic acid
structure [43]. However the omission of structural water
and di�culty in accurately representing the hydrophobic
e�ect limits the utility. In spite of this, there has been
some limited use of continuum methods, such as Poisson
Boltzmann methods, in MD simulation [44, 45]. Despite
the additional cost, more reliable representations of the
structure and dynamics are seen when explicit solvent is
included in the simulation. However, this raises issues
about how to include the solvent, what type of boundary
conditions to apply, and what solvent model to use.

The boundary conditions applied can be broken into
two classes based on whether the system is non-periodic,
or in other words surrounded by a ®nite amount of ex-
plicit solvent with a vacuum, continuum or other im-
plicit model beyond this, or periodic where the ®nite
system is e�ectively replicated in a periodic lattice and
toroidal boundary conditions are applied [17]. The point
of discussing the nature of the boundary in this overview
is that there are issues and potential for artifacts with
both types of boundary condition. In non-periodic sys-
tems, the most serious artifacts occur when the system is

surrounded by a vacuum interface and when methods
are not applied to break up the water ordering at the
surface. This surface tension leads to arti®cially large
pressures at the center of the system and reduced ¯uc-
tuations [46, 47]. A crude estimation of the internal
pressure increase is RDP � 15,000 AÊ -atm in a droplet
of water with a radius of R AÊ . A commonly applied
method to reduce the severity of this is the application of
stochastic boundary conditions where random forces
and/or simple boundary forces are applied to water near
the surface [48, 49]. However, removal of this ordering at
the surface is non-trivial and potentially incomplete with
stochastic methods. This has led to the development of
various complicated, water model and droplet-size-de-
pendent, functional forms applied to treat the molecules
at the boundary that have been used with limited success
[50]. An alternative means to avoid the ordering at the
surface and include some representation of the missing
solvent polarization is to eliminate the vacuum interface,
by surrounding the explicit system with an implicit sol-
vent model, such as an array of Langevin dipoles, a di-
electric continuum or a reaction ®eld [51±54]. Issues with
these simulations include avoiding force discontinuities
at the interface between the explicit and implicit systems
and the computational cost of providing a realistic rep-
resentation. Despite the availability of these methods,
they have seem limited application in large-scale bio-
molecular simulation. Part of the reason for this is that
often within the solvent blob all of the pairwise inter-
actions are represented (to avoid cuto� artifacts). This
becomes very expensive, even more expensive than pe-
riodic boundary conditions (PBC), for solvated bio-
molecules which tend to be rather large. Of course, it is
possible to apply fast multipole algorithms [55] or even
non-periodic fast Ewald methods [56] to make these
calculations more tractable and competitive with PBC.
In a recent paper the solvent boundary potential of
Beglov & Roux was applied with a cell-multiple treat-
ment [57]. However, the biggest problem is that none of
these boundary potentials seem to completely remove
the e�ect of the interface.

PBC seem to be the preferred boundary conditions,
particularly thanks to the recent availability of fast
methods to calculate the long-range interactions (as is
discussed in the next section). With PBC, the calcula-
tions are typically facilitated by calculating pairwise in-
teractions only to atoms within a given distance or
cuto�. Two types of cuto�s are commonly employed,
spherical cuto� (which can be performed on an atom to
atom, charge group or residue basis) and minimum im-
age conventions. With minimum image cuto�s, all in-
teractions of a given atom with other atoms within the
periodic unit (centered on the given atom) are included,
whereas with a spherical cuto�, only those atoms/groups
within a given radius are included. The minimum image
methods have been shown to have serious artifacts (due
to the presence of more interactions in the corners of the
periodic unit) in the simulation of dipolar solutions, such
as signi®cantly anisotropic and damped reorientational
motion [58]. These type of boundary conditions are best
avoided. With spherical cuto�s, the largest problem re-
lates to truncation of the long-range interactions, most
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notably the electrostatics interactions. As discussed in
more detail elsewhere [46] and in the next section, large
artifacts are readily apparent depending on the way the
interactions are truncated. These artifacts range in
severity from complete disruption of the structure (such
as is the case in the simulation of nucleic acids with
truncated group-based cuto�s) to completely inhibited
motion (observed with narrow-ranged atom-based
switching of the potential). As in the case of non-peri-
odic boundaries, it is possible to apply a reaction-®eld
treatment for interactions outside the cuto� sphere in
periodic boundary simulations [59±62]. However, the
approaches based on extensions to the Onsager theory
[63] break down if electroneutrality is not maintained
within each possible cuto� sphere (due to the ill-de®ned
dipole) and any treatment which assumes a uniform di-
electric outside the cuto� sphere will not be appropriate
in cases where individual biomolecules in the system are
bigger than the cuto� sphere (as is often the case in
large-scale biomolecular simulation). Additionally with
group-based methods, molecules entering and leaving
the cuto� sphere or e�ectively moving into and out of
the continuum represent a discontinuity in the forces
which leads to lack of energy conservation. Although
some of these de®ciencies can be minimized by using
larger cuto� spheres, the computational cost then be-
comes prohibitive with respect to the fast truly periodic
methods. Therefore, these methods have not seen con-
siderable use in large-scale biomolecular simulation.

An alternative to applying a cuto� to the long-range
electrostatic interactions is to apply a truly periodic
method, such as Ewald summation [17, 64]. However,
the imposition of true periodicity can lead to artifacts
since all the atoms now fully interact with their periodic
images. In principle, this may lead to correlation of
¯uctuations, such as the inhibition of the free rotation of
a dipole (as would be expected in the absence of true
periodicity) and artifactual forces between ions in a pe-
riodic box [65]. For example, two ions separated by half
the box length in a periodic box will experience no net
attractive or repulsive force due to balancing interac-
tions with the periodically imaged ions. In principle, this
artifact can be eliminated through arti®cial construction
of the simulation cell and the use of sine fast Fourier
transforms which modulate the e�ect of the true peri-
odicity [66]. However, this comes at the expense of other
observables, such as conservation of energy, and the
procedure has seen limited application. Alternatively,
the periodicity can be e�ectively removed in Ewald
simulations by placing a ®nite system (which means the
same issues regarding an explicit interface as discussed
above apply) in a larger periodic box and applying an
appropriate ®lter function [56], although this technique
has yet to see use in biomolecular simulation. Fortu-
nately, the artifacts from true periodicity seem to be
minor. In solvents with a su�cient permittivity, such as
water, dipolar rotation is not strongly inhibited. This has
been shown in a series of simulations by Smith and
Pettitt where the e�ective di�erence between free rota-
tion in solution and the hindered rotation expected with
true periodicity is less than kT for model dipoles in water
and moreover the rotational di�usion of a small

zwitterionic peptide in water is close to what is expected
[67±69]. Similarly, the potential of mean force as a
function of separation for two ions in water does not
display force artifacts in boxes as small as �12 AÊ [70].
Further evidence comes from estimation of the confor-
mational PMF of a blocked trialanine peptide in a 26 AÊ

periodic box (in vacuo) which agrees reasonably well to
that obtained without a cuto� and no periodicity [10].
Additionally, reasonable size-independent free energies
of solvation can be calculated, even for charged systems
[71±73]. These results suggest that the artifacts of true
periodicity are likely to be small for net-neutral periodic
cells when solvent with a su�ciently high dielectric is
used.

Another issue with truly periodic methods relates to
the treatment of the dielectric boundary, a term analo-
gous to a reaction ®eld that comes out of the solution of
the Poisson equation under PBC (the Ewald potential).
This term depends on the surface, shape, and composi-
tion of the periodic system at the limits of the summa-
tion over the macroscopic system (not to be confused
with the surface of the unit cell) [74]. In many imple-
mentations, tin-foil or conducting boundary conditions
are assumed which e�ectively represent a dielectric
boundary with a dielectric constant of in®nity and
thereby set this reaction ®eld term to zero. Simulations
by Boresh and Steinhauser show that imposition of tin-
foil boundary conditions may lead to overstabilization
of the correlation between dipoles at larger distances
[75]. They therefore recommend surrounding the system
by a dielectric boundary with a dielectric closer to that of
the experimental system. However, given that the surface
structure and therefore the polarization e�ects should
vanish for any disordered macroscopic system, it has
been argued that tin-foil boundary conditions are ap-
propriate for liquid simulations, whereas non-conduct-
ing boundary conditions should be applied in crystal
simulations [58].

A ®nal issue worth mentioning is that many force
®elds include speci®c terms (such as van der Waal pa-
rameters or solvent parameters) that are parameterized
using cuto�s or for use in simulations applying cuto�s
(i.e., the commonly applied TIP3P [76] and SPC/E [77]
water models). A concern is that complete treatment of
the long-range interactions could in principle lead to
artifacts from the force ®eld. However, typically much
better behavior is seen in Ewald simulations, such as
consistently closer agreement to experimental structures
when Ewald treatments are applied [47].

4 The importance of properly treating long-range
electrostatics

Inclusion of the long-range electrostatic interactions is
critical for poly-ionic systems such as lipids and nucleic
acids. This has been well known in biomolecular
simulation ever since the ®rst MD on nucleic acids
where it was necessary to eliminate the phosphate
charges to prevent distortion of the DNA duplex in
short simulations [78]. Similar behavior is observed
today even with state-of-the-art force ®elds when poor
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cuto� methods, such as residue-based truncation in the
8±20 AÊ range, are applied. In this case and without
arti®cial restraints added to maintain Watson-Crick base
pairing, distortion and disruption of duplex DNA is
observed within � 200 ps of MD [79]. By minimizing the
electrostatic force discontinuities at the cuto� (through
the use of atom-based force shifts at the cuto� or other
methods) stable nanosecond-length simulation of DNA
duplexes [80] in solution is possible, however it has been
observed that computed transport properties are very
sensitive to long-range electrostatic cuto�s. For lipid
simulation [5] even a 16 AÊ atom-based force shifted
cuto� provided signi®cantly altered transport properties
relative to an Ewald treatment. Given that a reasonable
representation of the structure of these systems is
possible, and moreover the fact that reasonable simula-
tion of protein systems has been noted for many years
despite the application of questionable cuto� methods,
one might question the importance of including long-
range electrostatic interactions. However, given the fact
that long-range interactions can now be included at little
or no additional cost (as discussed below), the proper
``physics'' is represented, and true periodicity artifacts
appear to be small, we question why not use Ewald
methods? In fact, this seems to be the general consensus
with more and more research groups routinely applying
the fast Ewald methods due to their generality and
availability in many of the common MD codes, such as
CHARMM [81], AMBER [82], and GROMOS [83].

The major reason for continued use of standard
cuto� methods is in part because of their legacy and in
part because of the greater ease of generating very
scaleable parallel implementations and ease of use for
simple modeling projects. Moreover, the problems with
cuto� simulations have been largely masked because of
the short-time scale of the simulations, fortuitous can-
cellation of errors, and in the case of proteins because
the ionic interactions are mostly con®ned to the surface
residues which do not strongly in¯uence the structure.
This fortuitous cancellation of errors in cuto� simula-
tions compared to Ewald simulations has been seen even
in the simulation of charged ions in solution where some
properties, such as orientational correlation functions
and some transport properties are in reasonably good
agreement [58]. Better examples of this fortuitous can-
cellation of errors are seen in the simulation of an
a-helical peptide by Schreiber & Steinhauser [84, 85].
Although reasonable representation of the a-helix was
observed with a commonly applied 10 AÊ cuto� (or with
an Ewald treatment), disruption of the helical structure
was seen at shorter (6 AÊ ) or longer (14 AÊ ) cuto�s. This
shows that the e�ect of the cuto� is not monotonically
related to cuto� distance and therefore better results are
not necessarily achieved by applying longer cuto�s. Of
course, the fortuitous cancellation of errors is not always
observed and in many cases cuto� simulations routinely
display artifactual behavior due to the omission of the
long-range electrostatics. This includes incorrect long-
range orientational correlations, strong anticorrelation
of dipolar ¯uctuations [86] and decreased translational
and rotational motion [60]. A particularly graphic ex-
ample of a cuto�-induced artifact, even when a spline-

smoothed potential at the cuto� (11.8 AÊ ) is applied, was
seen in simulations by Bader and Chandler where a net-
attractive PMF between two like-charged ions in solu-
tion was seen [70]. In these simulations, a well at �6±7 AÊ
and an attractive potential beyond 7 AÊ are observed in
cuto� simulations, in contrast to Ewald methods which
possess no well or attractive PMF (despite the imposi-
tion of true periodicity). The attractive potential is
strong enough that during dynamics the charged ions
separated by �9 AÊ move closer together in the cuto�
simulations. This type of behavior was also observed
independently by Dang and Pettitt for chloride ion
pairing in solution when a cuto� was applied [87] which
is not observed in corresponding Ewald simulations [88].
In addition to force artifacts between charged ions, in
some conditions the transport properties are also dras-
tically altered in cuto� simulations. This has been seen in
the simulation of lipid bilayers, where long-range order
was apparent in the radial distribution functions at long
distances, the electrostatic pro®le across the membrane
was grossly misrepresented, and greater viscosity and
lower translational di�usion of the water observed [5].
Although most of these di�culties were well known,
particularly by the liquid-state simulation community
who has been using Ewald methods for years, these have
been largely ignored by the biomolecular simulation
community due to the large amount of solvent that
needs to be included in the calculations and the masking
of errors, as discussed above. This rationalization has
largely changed thanks to the availability of faster
computers and fast Ewald methods.

The ®rst large-scale application of fast Ewald meth-
ods in large-scale nanosecond-length biomolecular sim-
ulation was presented by Darden and co-workers who
investigated a variety of nucleic acid and protein crystals
using the e�cient particle mesh Ewald (PME) method
[38, 89]. Darden developed the method to overcome the
artifactual gross distortion of DNA structure seen when
residue-based cuto�s were applied. With these methods,
excellent representation of the structure of crystals of
nucleic acids and proteins were observed [90±94]. The
PME method is a generalization of the particle-particle
mesh Ewald (PPPM) method inspired by Hockney and
Eastwood [95] and developed more recently by Luty
et al. [96]. An additional fast Ewald method is the fast
Fourier-Poisson method [93]. All of these methods have
in common the use of fast Fourier transforms to speed
the calculation of the reciprocal space interactions. The
PME method has become the most widely applied of the
fast Ewald methods due to its accuracy, speed, and fa-
cility for constant pressure calculations [38, 97]. A good
comparison of PME and PPPM methods has been re-
cently published by Darden and co-workers [98]. With
the fast Ewald methods, e�ectively shorter cuto�s in the
9±11 AÊ range can be applied to build the pairlist (since
the cuto� e�ectively only applies to the Lennard-Jones
interactions) which makes these methods faster than the
standard atom-based force-shifted cuto�s employed in
the 12±14 AÊ range. Given that the artifacts apparent in
the simulation resulting from the true periodicity appear
less severe than those in comparable cuto� simulations,
fast Ewald methods should be routinely applied. Alter-
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natives to the fast Ewald methods, which can also be
used in truly periodic simulations, are periodic FMM
[55, 99±102]. Despite the apparent formally better scal-
ing (linear in number of atoms, N, rather than the N-
log(N) scaling seen with fast Ewald methods), these
methods realistically scale as N-log(N) to maintain
consistent force errors as the system size increases and
have not seen as much usage in accurate nanosecond-
length biomolecular simulation to date. Part of this
stems from the complexity of the code and need for high-
order multipole expansions to obtain su�cient accuracy
[26] and also since the break-even point for the compu-
tational cost occurs at larger numbers of atoms than are
typically included in current biomolecular simulations.
For simulations in the �104 atom range, the fast Ewald
methods are typically faster (assuming an equivalent
level of accuracy) [101].

5 Empirical pairwise potential functions: How can such
as simple model accurately represent the structure
and dynamics of biomolecules?

The accuracy of the potential function largely relates to
the quality and speci®cs of the parameterization. Increas-
es in computer power signi®cantly aid the parameteriza-
tion e�orts, not only by allowing higher level basis sets
and representation of larger molecules in QM treatments
of model compounds, but by allowing more in-depth
evaluation of representative biomolecules inMD and this
in turn leads to better force ®elds. While the arguably
more strongly parameterized force ®elds such as MM3
[103] or the Merck Molecular force ®eld [104] perform
better for strained and diverse small molecules, the ``work
horse'' force ®elds for biomolecular simulation are still the
speci®cally parameterized force ®elds such asCornell et al.
[105] (proteins and nucleic acids), CHARMM/MacKerell
[106] (proteins, nucleic acids, and lipids), OPLS [107, 108]
(organic liquids, carbohydrates) and others. Part of the
success of themore recent force ®elds is that they provide a
balanced treatment of not only the intramolecular
interactions, but are parameterized to provide proper
balance with the intermolecular interactions, such as
those with solvent. Moreover, the application of methods
which properly represent the long-range electrostatic
forces has also tremendously increased the reliability of
the simulations. A nice example is seen in simulations of
ubiquitin, where the results with the Cornell et al. [105]
force ®eld are consistently better than the earlier Weiner
et al. [109] force ®eld (in terms of RMSd to the crystal
structure) and in both cases genuinely improve (i.e., the
improvement is not due to the structure sti�ening) when
Ewaldmethods are applied [47]. Although each force ®eld
has speci®c weaknesses, progress is underway to improve
the de®ciencies. With further methodological advances
(to increase the speed of calculations with explicit
polarization), it is likely that force ®elds for biomolecular
systems which include explicit polarization will emerge in
the next few years. Of course, success of the methods
comes down to comparison with experimental values and
ultimately prediction, and signi®cant progress towards
this goal has been seen.

6 Realistic biomolecular simulation with an explicit
representation of the environment

To properly represent the structure and dynamics of
biomolecular systems, it is desirable to include some
representation of the environment in the simulations.
Since water and counterions often play a structural role,
some explicit representation is necessary and when an
explicit solvent is included, the simulations can reason-
ably represent the structure and dynamics. The avail-
ability of the fast Ewald methods has lead to a
renaissance in the simulation of highly charged systems,
such as nucleic acids. Previously, the simulation of
nucleic acids was plagued by instabilities. Now routine
and reliable nanosecond-length simulation of various
nucleic acid structures is possible. A non-exhaustive list
of successes has involved investigating ion association
[80, 110], sequence-speci®c structure and hydration [1,
111, 112], reliability of the force ®elds [113±116], various
backbone modi®cations (such as PNA [117], phosphor-
amidate [118], and guanidine [119] modi®ed nucleic
acids) and photodamage [120, 121] in nucleic acid
duplexes. Other structures, such as DNA triplexes
[122±125], RNA hairpin loops [126, 127] and t-RNA
[128, 129] have also been investigated with reasonable
success.

Highlights of the simulation of DNA duplexes are the
demonstration that environmentally dependent confor-
mational preferences can be reasonably represented.
Whereas spontaneous A-DNA to B-DNA transitions
are observed in water with the Cornell et al. force ®eld
[1], simulations with the same DNA duplex and force
®eld in � 85% ethanol show preferential stabilization of
A-DNA [2, 4] and spontaneous B-DNA to A-DNA
transitions are seen when 4:1 hexaammine cobalt (III) is
added to particular sequences in agreement with exper-
imental data [3]. These simulations suggest that water
and ion association in the major groove is likely to sta-
bilize A-DNA and provide molecular-level insight that
has not been easily seen in experimental A-DNA solu-
tion studies. What is particularly exciting about these
calculations is the ability to sample relevant nucleic acid
conformations in MD simulations and preferential sta-
bilization based only on subtle changes to the environ-
ment.

Similar levels of success have also been seen in protein
and lipid-bilayer simulation. Simulations are now able to
critically assess the e�ective surface area per head group
and reasonably represent the structure and interfacial
properties of bilayers of various types [5±8]. Most ex-
citing in the representation of protein dynamics is the
demonstration of the ability rather than simply to unfold
a protein, to move closer to the correct structure from
misfolded structures. This has been seen with small
peptide models [9] and also more recently with small
proteins in solution. In the latter case, instabilities due to
cuto� e�ects lead to unfolding of the protein whereas
correct behavior is observed in Ewald simulations
(Carlos Simmerling, personal communication). In addi-
tion, exciting work has continued in the investigation
of reaction coordinates for protein folding [11, 12] and
even more recently with reversible-folding simulations of
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small b-peptides in methanol [13, 14]. These latter sim-
ulations show correct folding to the native structure and
in high-temperature simulations allow characterization
of the unfolded states. These simulations suggest that
there is only a relatively small number of ``unfolded''
conformations (in contrast to the expected exponential
explosion) which suggests that given su�cient computer
time (and sampling) understanding of the folding pro-
cess may be possible.

Major issues that still compound the simulation, be-
yond the short-time and length scales, relate to confor-
mational sampling problems and the di�culty in
overcoming any but rather small barriers to structural
transition in nanosecond-length MD. For example, MD
results suggest that imaginary structures (i.e., metastable
structures which have never been observed experimen-
tally) such as B-RNA are stable over a multi-nanosec-
ond simulation [113]. Methods are needed to achieve
e�ective lowering of the conformational barriers or to
allow structures across the barriers in an unbiased
manner. A promising technique that e�ectively lowers
the barriers is the locally enhanced sampling methodol-
ogy [130]. This allows spontaneous transformation of
incorrect to correct RNA hairpin-loop structures [131],
reasonable representation of slightly misfolded struc-
tures, and prediction of protein-loop conformation (as
discussed previously).

7 Commodity processors, powerful workstations
and massively parallel supercomputers:
Biomolecular simulation for the masses?

Although perhaps less glamorous than the methodolog-
ical and force-®eld improvements, the steady increase in
computer power has greatly facilitated these advances
has allowed more detailed investigation of the potentials
and methods, allowed sampling over longer time scales,
and highlighted previously masked de®ciencies as previ-
ously discussed. Generous grants of computer time and
access to massively parallel computers at the various
supercomputer centers throughout the U.S. and Europe
have aided the ®eld. The availability of these machines
has led to widespread availability of parallelized MD
codes and moreover most of the recent work discussed
herein could not have been performed without access to
this kind of supercomputing power. With these large
machines, nanosecond-length simulations can currently
be performed in hours or days rather than months or
years. A bene®t of the fast-moving pace of the computer
industry is that simulations which previously required
access to the fastest available supercomputers a few
years ago can now be performed on relatively inexpen-
sive workstations. This brings realistic biomolecular
simulation into the realm of more general users, allowing
anyone with a computer and a reasonable understanding
of the methods to investigate the dynamics of biomo-
lecular systems in a fairly realistic fashion. These
increases in computer power allow investigation on a
level beyond simple molecular modeling, allowing some
limited conformational sampling and inclusion of accu-
rate methods and potentials. The microprocessor revo-

lution, coupled with the low cost of commodity proces-
sors, further aids this e�ort [132]. The relatively modest
communication requirements of standard MD algo-
rithms allows e�cient ``Beowulf'' class computers [133],
or loosely coupled networks of commodity processors,
to be built on a modest budget which provide reasonable
computational power for biomolecular simulation. An
example of such a computer is the lots of boxes on
shelves (LoBoS) computer system being developed at the
NIH out of Pentium Pro processors and a matched 100
baseT ring topology network used primarily for biomo-
lecular simulation with CHARMM, AMBER, and
GAMESS (see http://www.lobos.nih.gov). These modest
costs bring a machine of this type into the cost level
a�ordable by individual researchers. This is not to say
that more computer power is not necessary and further
access to the state-of-the-art parallel computer systems
warranted since ideally we would like to push biomo-
lecular simulation into the microsecond to millisecond
time scale with more realistic energy representations and
the study of more than minimally sized biomolecules.
Access to greater computational power will bring
molecular simulation into the time-scale range appro-
priate for studying more complex processes such as
protein folding, to properly represent lateral di�usion in
lipid bilayers [134], or to study more complicated
conformational transitions in nucleic acids such as the
B-DNA to Z-DNA transition. It is hoped that continued
access will be made available to these state-of-the-art
computational resources to bring structural biomolecu-
lar simulation up to the status of more traditional
experimental tools.
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